Лекальные кривые Центральное проецирование Аксонометрическая проекция Параллельные прямые Условие видимости на чертеже Построение теней Тени цилиндра Тени конуса Линии и поверхности Поверхности винтовые

Лекции по черчению, начертательной геометрии

Тени цилиндра

Чтобы построить контур собственной тени цилиндрической поверхности, необходимо провести к этой поверхности касательные лучевые плоскости, параллельные направлению лучей света, и найти линии касания (образующие цилиндра). Вдоль этих образующих пройдет контур собственной тени.

На рисунке 93 приведен пример построения собственной и падающей теней вертикально расположенного прямого кругового цилиндра. Контур собственной тени цилиндра проходит вдоль образующих АВ и CD и замыкается сверху полуокружностью АМС верхнего основания, а снизу  полуокружностью BND нижнего основания.

Контур падающей тени от цилиндра состоит из падающих теней от образующих АВ и СD и падающих теней от полуокружностей АМС и BND.

Рис. 93

Падающие тени от образующих АВ и СD определяются с помощью следов H, m, H и n, касательных лучевых плоскостей  и . Тени, падающие от полуокружностей АМС и BND, определяются как в примерах предыдущей темы (рис. 85).

Собственную тень на вертикальном круговом цилиндре в ортогональных проекциях можно построить, не имея горизонтальной проекции цилиндра, так как известно, что расстояние от фронтальных проекций образующих АВ и CD до фронтальной проекции оси цилиндра равно радиусу цилиндр, умноженному на косинус 45о, то есть:

O'B' = O'D' = 0,707 O''K'' (рис. 93).

Графическим путем проекции В'' и D'' точек B и D можно найти следующим образом (рис. 93): из точек O'' и K'' проводим под углом 45 градусов к отрезку O''K'' прямые  катеты прямоугольного треугольника O''1 K''. Из точки O'' радиусом O''1 проводим полуокружность, пересекающую прямую N''K'' в искомых точках B'' и D''.

Тени конуса

На рис. 94, 95 выполнены построения собственной и падающей теней конуса.

Рис. 94

Рис. 95

Вначале определяется тень ST' (мнимая), падающая от вершины S конуса на плоскость его основания Н; из полученной точки проводятся прямые, касательные к основанию конуса, и определяются точки касания А и В. Через эти точки проводятся образующие SA и SB, которые вместе с дугой основания АМВ образуют контур собственной тени.

Касательные ST'A' и ST'B' к основанию на рис. 94, 95 являются линиями контура падающей тени конуса. Однако, это справедливо лишь в том случае, если конус стоит на плоскости, на которую падает тень. На рисунке падающая тень имеет точки изломов на оси ОХ.5

Тень, падающая от одной фигуры на другую Метод обратных лучей

Метод следа светового луча (метод сечения лучевой плоскостью) Метод следа луча основан на том, что тень, падающая от точки, есть след проведенного через нее луча.

Тени пересекающихся многогранников (от здания) Выше говорилось, что тени делятся на собственные и падающие. Определение собственной тени сводится к нахождению ее контуров, то есть линий, отделяющих освещенную часть поверхности от неосвещенной.


Разверка поверхностей