Решить систему уравнений методом Гаусса Дифференциальные уравнения, вычислить интеграл Вычислить определитель Построить график функции Найти сумму ряда Вычислить пределы функций

Самостоятельная работа по высшей математике

Пример. В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + ( -u + v)×0 + (5u + 2v )×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 ( иначе v=0, а это противоречит определению пучка ), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.

Пусть даны две прямые

 

с направляющими векторами   и  соответственно. При любом расположении прямых  и  в пространстве за угол  между этими прямыми принимают один из двух смежных углов, которые образуют прямые, проведенные параллельно данным, через какую-нибудь точку пространства. Один их этих смежных углов равен углу  между их направляющими векторами   и  данных прямых. Тогда

.  (3.26)
Второй угол равен .

Параллельность (перпендикулярность) двух прямых  и  означает, очевидно, коллинеарность (ортогональность) их направляющих векторов. Поэтому

  , (3.27)

  . (3.28)

В заключение найдем расстояние d от точки  до прямой L:  в пространстве. Искомое расстояние d является высотой параллелограмма, построенного на векторах  и  (рис.4.4). Так как площадь параллелограмма, построенного на векторах  и , равна модулю их векторного произведения, то

.  (3.29)

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

 Определение. Если  - базис в пространстве и  , то числа a, b и g - называются компонентами или координатами вектора  в этом базисе.

В связи с этим можно записать следующие свойства:

равные векторы имеют одинаковые координаты,

при умножении вектора на число его компоненты тоже умножаются на это число,

= .

при сложении векторов складываются их соответствующие компоненты.

;

  + =

Линейная зависимость векторов.

 Определение. Векторы  называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai , т.е. .

Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

 Свойство 1. Если среди векторов  есть нулевой вектор, то эти векторы линейно зависимы.

 Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

 Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

 Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

 Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

 Свойство 6. Любые 4 вектора линейно зависимы.

Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.
Вычислить определитель матрицы