Решить систему уравнений методом Гаусса Дифференциальные уравнения, вычислить интеграл Вычислить определитель Построить график функции Найти сумму ряда Вычислить пределы функций

Курсовая работа по высшей математике

Пример. Пусть дана леонтьевская балансовая модель “затраты - выпуск” X = AX +Y. Найти вектор конечной продукции Y при заданном X, где

A = ;

Решение. Имеем: Y = (E - A) X, где E - единичная матрица третьего порядка.

E - A = ,

значит,

Y=  .

Пример. Пусть дана леонтьевская балансовая модель “затраты-выпуск”. Определить, будет ли продуктивной матрица технологических коэффициентов A. Найти вектор валовой продукции X при заданном Y, где

A=.

Решение. Для решения вопроса о продуктивности матрицы A следует найти собственные значения этой матрицы. Составим характеристическое уравнение:

,

или

(0,125 -l)2 - 0,140625 = 0 Þ 0,125 - l = ± 0,375.

Следовательно, l1 = 0,5; l2 = - 0,25. Оба корня по модулю меньше единицы, значит, матрица технологических коэффициентов A продуктивная. Для определения вектора валовой продукции X имеем формулу
X = (E - A) -1 Y. Найдем обратную матрицу для матрицы

E - A=.

Обозначим B = E-A, тогда .

Следовательно,

X = .

 Пример. Найти решение системы уравнений:

D = = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

D1 =  = (28 – 48) – (42 – 32) = -20 – 10 = -30.

x1 = D1/D = 1;

D2 =  = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

x2 = D2/D = 2;

D3 =  = 5( 32 – 42) + (16 – 56) = -50 – 40 = -90.

x3 = D3/D = 3.

 Как видно, результат совпадает с результатом, полученным выше матричным методом.

 Если система однородна, т.е. bi = 0, то при D¹0 система имеет единственное нулевое решение x1 = x2 = … = xn = 0.

При D = 0 система имеет бесконечное множество решений.

 Для самостоятельного решения:

; Ответ: x = 0; y = 0; z = -2.

Решение произвольных систем линейных уравнений.

 Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

  Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:

 

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

 Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.

 Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

 Определение. Для системы линейных уравнений матрица

А =  называется матрицей системы, а матрица

А*=  называется расширенной матрицей системы

 Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна, т.к. всегда имеет нулевое решение.

Комплексные числа и многочлены. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Формула Эйлера. Корни из комплексных чисел. Многочлены, разложение многочленов на множители, деление многочленов, теорема Безу о виде остатка.
Вычислить определитель матрицы